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Abstract

In the last years, neuroimaging has shown
ability to be used in the detection of men-
tal diseases. However, a pathophysiologi-
cal model of Attention Deficit Hyperactiv-
ity Disorder (ADHD) hasn’t been established
yet. This work aimed to aiding diagno-
sis of ADHD from the ADHD-200 collec-
tion launched in the context of a world-
wide competition in 2011. The heterogeneous
dataset, regarding on nearly one thousand
patients assessed in eight research sites, in-
cludes both phenotypical and neuroimaging
data. Through this work, we propose to inte-
grate a multilevel approach to our hierachi-
cal structure of classification in order to :
(1) adress the heterogeneity of the ADHD-
200 collection, (2) provide praticians with a
convenient and understandable diagnosis tool
through decision trees, (3) raise a subset of
cerebral regions of interest as biomarkers of
the trouble.

1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD)
amounts approximately to five percent of children
worldwide. This neuropsychological disorder is defined
by three components, the importance of which depends
on patients: hyperactivity, impulsiveness and inatten-
tion. ADHD, which is likely to persist into adulthood,
has impact on children’s well-being on the academic,
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psychological and relational planes. The assessment
of ADHD is based on reports from the patients’ envi-
ronment (parents and teachers mainly) but the neu-
rophysiological bases of the disorder have not been
fully defined yet. Therefore, as no biological infor-
mation can be exploited concretely to complete the
assessment, the diagnosis of ADHD is unmistakably
subjective.

In 2011, a medical dataset of nearly one thousand pa-
tients was publicly made available in the context of
the ADHD-200 competition (Milham et al., 2012). It
includes clinical data and magnetic resonance images
(MRI) that are related to the structure and the resting
state functional activity of the patients’ brain1. Scien-
tists from all spheres were challenged to develop an al-
gorithm able to predict diagnosis based on neuroimag-
ing and possibly, on clinical data. With a best pre-
diction rate amounting to 61% on the test set (Eloyan
et al., 2012), the competition results are quite encour-
aging but there is scope for even greater progress.

The ADHD-200 collection gathers data from eight neu-
roimaging sites located in China, the Netherlands and
the United States. This involves various sources of
heterogeneities across sites, notably through the mea-
surement conditions and instrument calibrations, the
gender representativeness as well as the healthy and
pathological cases proportions. Moreover, it has been
shown that socio-economic factors influence the local
prevalence of ADHD (Akinbami et al., 2011; Sciberras
et al., 2011; Bøe et al., 2012; Russell et al., 2014). This
complex aspect of the data processing was raised by
previous works (Brown et al., 2012; Colby et al., 2012;
Olivetti et al., 2012; Sidhu et al., 2012) and the or-

1See http://fcon_1000.projects.nitrc.org/indi/
adhd200/
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ganizers of the competition ADHD-200 in its outcome
(Milham et al., 2012). In addition to this particular
feature of the dataset, the model response is structured
in a hierarchical way. Indeed, the classification task
should distinguish typically developing children from
those who are affected by ADHD. In case of positive
diagnosis, the ADHD type should also be raised be-
tween inattention (ADHD-I) and combined patterns
of inattention-hyperactivity-impulsivity (ADHD-C).
ADHD hyperactivity-impulsivity type (ADHD-HI)
can’t be predicted as the associated population is
weakly represented in the dataset (1.4%).

2. Related work

2.1. Data and Features Extraction

Among clinical data, age, gender, handedness and IQ
were used for training. As far as neuroimaging data
is concerned, we used extracted resting-state fMRI
signals processed according to The Athena pipeline2

by the Neuro Bureau. The signals measure the time
course of each region of interest (ROI). Brains are
parcelled into ROIs according to a standard ; Auto-
mated Anatomical Labeling (AAL) atlas was consid-
ered in this work, which involves a set of 116 time
courses. We focused exclusively on functional brain
images rather than structural ones since recent stud-
ies showed the functional brain activity involvement
as significant in neurobiological phenomenons (Purdon
et al., 2011; Sidhu et al., 2012).

There are various ways of extracting features from
MRI signals. The most common pipelines in neu-
roimaging seem to consider the computation of a func-
tional correlation matrix (Marrelec et al., 2006; Rubi-
nov & Sporns, 2010; Telesford et al., 2010; Smith et al.,
2011; Colby et al., 2012; Dai et al., 2012). It is then
possible to deduct some graph metrics (Colby et al.,
2012). Signals can also be directly treated by princi-
pal component analysis, and the resulting coefficients,
used for training (Sidhu et al., 2012). In this work, we
considered another pipeline. From fMRI signals, we
computed statistics such as variance, kurtosis and
skewness. Besides, applying Discrete Fourier Trans-
form (DFT) lead to consider frequency features as the
line of maximal amplitude and the centroid of
Fourier Spectra. The latter information is useful in
music classification (Tzanetakis & Cook, 2002), mea-
suring its timbral texture and has been also used for
speech recognition (Le et al., 2011). In this context,
we hoped that using this feature may reveal a distinct

2See http://www.nitrc.org/plugins/mwiki/index.
php/neurobureau:AthenaPipeline

signature of ADHD.

A set of 116 features by modality (variance, skewness,
kurtosis, frequency, spectral centroid) was computed,
which means that biomarkers accounted for 580 fea-
tures altogether, in addition to the four clinical at-
tributes. A feature extraction was clearly required.
This was achieved thanks to a correlation-based fea-
ture subset selection (Hall, 1999) to detect attributes
that weakly correlates but are highly correlated with
the prediction variable.

2.2. A Multilevel Approach

At the first level of the structure of classification, a
predictive model is developed by neuroimaging site to
separate the groups TD and ADHD, all types con-
fused. The significant parameters for the classification
are potentially different for each site. New-York and
Peking sites were studied in this work as they are as-
sociated to the largest proposed datasets. The second
level of the structure of classification allowed to sepa-
rate the groups ADHD-I and ADHD-C, all sites con-
fused within a whole training set. We so proceed for
two reasons. The first one is of technical order: the
size of the datasets per site (approximately from 25
to 125 instances) is low so that it is not possible to
establish a reliable classifier on a restrictive mass of
information. The second reason is that we wished to
lead an investigation regarding the efficiency of cross-
ing the information in a global level.

Support vector machine (SVM) is generally used for
neuroimaging data learning, providing high accuracies
(Fair et al., 2012; Wee et al., 2012; Strigo et al., 2013).
However, this glass model doesn’t allow human val-
idation, and can’t be concretely used by praticians.
That’s why we privileged decision trees that are pre-
ferred as diagnosis tools (Tanner et al., 2008).

3. Results and Conclusion

A multilevel approach allowed to raise very different
conclusions between levels of classification and neu-
roimaging sites, in particular as for the explanatory
variables implication. The low number of cerebral
zones involved in the models suggests that the biolog-
ical model associated to ADHD could be less complex
than expected. On the test sets, the acquired accu-
racies for New-York and Peking sites accounted for
58% and 66.7% against 35.2% and 51% by ADHD-200
competitors in average3 as well as 37% and 57% by a
similar work of the litterature (Colby et al., 2012).

3See http://fcon_1000.projects.nitrc.org/indi/
adhd200/results.html
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